
Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 1 -

Graphs – ADTs and Implementations

ORD

DFW

SFO

LAX

80
2

1843

1233

337

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 2 -

John

DavidPaul

brown.edu

cox.net

cs.brown.edu

att.net
qwest.net

math.brown.edu

cslab1bcslab1a

Applications of Graphs
Ø  Electronic circuits

q  Printed circuit board

q  Integrated circuit

Ø  Transportation networks
q  Highway network

q  Flight network

Ø  Computer networks
q  Local area network

q  Internet

q Web

Ø  Databases
q  Entity-relationship diagram

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 3 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 4 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 5 -

Edge Types
Ø  Directed edge

q  ordered pair of vertices (u,v)

q  first vertex u is the origin

q  second vertex v is the destination

q  e.g., a flight

Ø  Undirected edge
q  unordered pair of vertices (u,v)

q  e.g., a flight route

Ø  Directed graph (Digraph)
q  all the edges are directed

q  e.g., route network

Ø  Undirected graph
q  all the edges are undirected

q  e.g., flight network

ORD PVD

flight
AA 1206

ORD PVD

849
miles

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 6 -

Vertices and Edges
Ø  End vertices (or endpoints) of

an edge
q  U and V are the endpoints of a

Ø  Edges incident on a vertex
q  a, d, and b are incident on V

Ø  Adjacent vertices
q  U and V are adjacent

Ø  Degree of a vertex
q  X has degree 5

Ø  Parallel edges
q  h and i are parallel edges

Ø  Self-loop
q  j is a self-loop

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 7 -

Graphs
Ø  A graph is a pair (V, E), where

q  V is a set of nodes, called vertices

q  E is a collection of pairs of vertices, called edges

q  Vertices and edges are positions and store elements

Ø  Example:
q  A vertex represents an airport and stores the three-letter airport code

q  An edge represents a flight route between two airports and stores the
mileage of the route

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

80
2

1843

1120
1233

337 2555

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 8 -

P1

Paths

Ø  Path
q  sequence of alternating

vertices and edges

q  begins with a vertex

q  ends with a vertex

q  each edge is preceded and
followed by its endpoints

Ø  Simple path
q  path such that all its vertices

and edges are distinct

Ø  Examples
q  P1=(V,b,X,h,Z) is a simple path

q  P2=(U,c,W,e,X,g,Y,f,W,d,V) is a
path that is not simple

X U

V

W

Z

Y

a

c

b

e

d

f

g

h P2

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 9 -

Cycles

Ø  Cycle
q  circular sequence of alternating

vertices and edges

q  each edge is preceded and
followed by its endpoints

Ø  Simple cycle
q  cycle such that all its vertices

and edges are distinct

Ø  Examples
q  C1=(V,b,X,g,Y,f,W,c,U,a,V) is a

simple cycle

q  C2=(U,c,W,e,X,g,Y,f,W,d,V,a,U)
is a cycle that is not simple

C1

X U

V

W

Z

Y

a

c

b

e

d

f

g

h C2

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 10 -

Subgraphs

Ø A subgraph S of a graph
G is a graph such that
q The vertices of S are a

subset of the vertices of G

q The edges of S are a
subset of the edges of G

Ø A spanning subgraph of
G is a subgraph that
contains all the vertices of
G

Subgraph

Spanning subgraph

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 11 -

Connectivity
Ø A graph is connected if

there is a path between
every pair of vertices

Ø A connected component
of a graph G is a maximal
connected subgraph of G

Connected graph

Non connected graph with two
connected components

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 12 -

Trees

Tree Forest Graph with Cycle

A tree is a connected, acyclic, undirected graph.

A forest is a set of trees (not necessarily connected)

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 13 -

Spanning Trees

Ø  A spanning tree of a connected
graph is a spanning subgraph that
is a tree

Ø  A spanning tree is not unique
unless the graph is a tree

Ø  Spanning trees have applications
to the design of communication
networks

Ø  A spanning forest of a graph is a
spanning subgraph that is a forest

Graph

Spanning tree

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 14 -

Reachability in Directed Graphs
Ø A node w is reachable from v if there is a directed path

originating at v and terminating at w.
q  E is reachable from B

q B is not reachable from E

A

C

E

B

D

F

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 15 -

Properties

Notation
 |V| number of vertices

 |E| number of edges

deg(v) degree of vertex v

Property 1

Σv deg(v) = 2|E|

Proof: each edge is counted
twice

Property 2
In an undirected graph with no

self-loops and no multiple
edges

 |E| ≤ |V| (|V| - 1)/2

Proof: each vertex has degree
at most (|V| – 1)

Example
n  |V| = 4
n  |E| = 6
n  deg(v) = 3

A : E ≤ V (V −1)
Q: What is the bound for a digraph?

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 16 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 17 -

Main Methods of the (Undirected) Graph ADT
Ø Vertices and edges

q are positions
q store elements

Ø Accessor methods
q endVertices(e): an array of the

two endvertices of e
q opposite(v, e): the vertex

opposite to v on e
q areAdjacent(v, w): true iff v and

w are adjacent
q replace(v, x): replace element at

vertex v with x
q replace(e, x): replace element at

edge e with x

Ø Update methods
q  insertVertex(o): insert a vertex

storing element o
q  insertEdge(v, w, o): insert an

edge (v,w) storing element o
q removeVertex(v): remove vertex

v (and its incident edges)
q removeEdge(e): remove edge e

Ø  Iterator methods
q  incidentEdges(v): edges

incident to v
q vertices(): all vertices in the

graph
q edges(): all edges in the graph

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 18 -

Directed Graph ADT

Ø Additional methods:
q  isDirected(e): return true if e is a directed edge
q  insertDirectedEdge(v, w, o): insert and return a new directed

edge with origin v and destination w, storing element o

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 19 -

END OF LECTURE
MARCH 25, 2014

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 20 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 21 -

Running Time of Graph Algorithms

Ø Running time often a function of both |V| and |E|.

Ø  For convenience, we sometimes drop the | . | in
asymptotic notation, e.g. O(V+E).

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 22 -

Implementing a Graph (Simplified)

Adjacency List Adjacency Matrix

Space complexity:

Time to find all neighbours of vertex :u

Time to determine if (,) : ∈u v E

()θ +V E

(degree())θ u

(degree())θ u

2()θ V
()θ V

(1)θ

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 23 -

Representing Graphs (Details)

Ø  Three basic methods
q Edge List

q Adjacency List

q Adjacency Matrix

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 24 -

Edge List Structure
Ø  Vertex object

q  element

q  reference to position in vertex
sequence

Ø  Edge object
q  element

q  origin vertex object

q  destination vertex object

q  reference to position in edge
sequence

Ø  Vertex sequence
q  sequence of vertex objects

Ø  Edge sequence
q  sequence of edge objects

v

u

w

a c
b

a

z
d

u v w z

b c d

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 25 -

Adjacency List Structure

Ø  Edge list structure
Ø  Incidence sequence for

each vertex
q  sequence of references to

edge objects of incident
edges

Ø  Augmented edge objects
q  references to associated

positions in incidence
sequences of end vertices

u
v

w
a b

a

u v w

b

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 26 -

Adjacency Matrix Structure
Ø  Edge list structure
Ø  Augmented vertex

objects
q  Integer key (index)

associated with vertex

Ø  2D-array adjacency
array
q  Reference to edge

object for adjacent
vertices

q  Null for non-
nonadjacent vertices

u
v

w
a b

0 1 2

0 Ø Ø

1 Ø

2 Ø Ø a

u v w 0 1 2

b

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 27 -

Asymptotic Performance
(assuming collections V and E represented as

doubly-linked lists)
" |V| vertices, |E| edges
" no parallel edges
" no self-loops
" Bounds are “big-Oh”

Edge
List

Adjacency
List

Adjacency
Matrix

Space |V|+|E| |V|+|E| |V|2

incidentEdges(v) |E| deg(v) |V|
areAdjacent (v, w) |E| min(deg(v), deg(w)) 1
insertVertex(o) 1 1 |V|2

insertEdge(v, w, o) 1 1 1
removeVertex(v) |E| deg(v) |V|2
removeEdge(e) 1 1 1

Last Updated: 2014-03-18 8:08 AM
CSE 2011
Prof. J. Elder - 28 -

Outline

Ø Definitions

Ø Graph ADT

Ø  Implementations

